Research Reports

Institute: UCL

Fuel Cell technologies for an ammonia economy

Dr Dan Brett (UCL)

The main aim of this proposal is to offer a viable, competitive alternative to current PEM fuel cells and their hydrogen provision. Specifically, to increase the fuel flexibility of low-temperature polymer electrolyte fuel cells through developing a state-of-the art anion membrane alkaline fuel cell, using hydrogen obtained from ammonia as the fuel source.


Institute: Imperial College

Innovative concepts from electrodes to stacks

Prof. Anthony Kucernak (Imperial College)

This project endeavors to develop new corrosion-resistant catalyst supports, and new techniques to catalyse those supports. To this end,

  • Porous bipolar plates will be developed and integrated along with the catalysts within a fuel cell.
  • The materials will be tested to assess their performance and longevity.
  • X-ray tomography and other imaging techniques will be used to assess the performance of the materials under real operating conditions.
  • Information from these tests will enable the development of a methodological framework to simulate the performance of the fuel cells. This framework will then be used to build more efficient control strategies for higher performance fuel cell systems.

Full details on this project can be found here.

View Powerpoint View

Institute: Southampton

Covalently stabilised carbonaceous catalyst supports for polymer electrolyte fuel cells and electrolysers

Dr Denis Kramer

This project aims to develop corrosion-stable support materials for Polymer-Electrolyte Fuel Cells and Electrolysers to mitigate a key degradation mode that limits the lifetime of these devices. Currently the best supports are made out of carbon, which slowly corrodes in the hot, acidic, oxidising environment. The project seeks to this carbon with inorganic carbides, which are more resistant to corrosion. This should make fuel cells work longer and electrolysers cheaper to make.

See website for further details.

Institute: Surrey

A low-cost carbon-based oxygen electrode for polymer electrolyte membrane fuel cells

Dr Qiong Cai

This project aims to develop noble-metal free, carbon-based catalysts, to make significant advancement for polymer electrolyte membrame fuel cells (PEMFCs). This would provide a low cost, environmentally sustainable, high performance energy technology solution. With optimised carbon catalyst, the PEMFCs are expected to have improved cycling and steady state durability.

View Powerpoint

Institute: Imperial College

Building the “perfect” PEFC fuel cell electrode

Prof Anthony Kucernak

Project Complete

To utilise the newly developed approach for making ultra-low loading and high mass transport active electrodes to study the hydrogen oxidation and evolution reactions and the oxygen reduction and evolution reactions in making an operating electrolyser or fuel cell

Scientific Advances:

– Production of microelectrokinetic model for the hydrogen reaction which describes performance of platinum based electrodes across applied potential, pH, hydrogen concentration and temperature using four kinetic parameters. This model is used to simultaneously fit results for 19 independent experiments.

– Production of a microelectrokinetic model for the oxygen reduction reaction which describes performance of platinum based electrodes across applied potential, temperature and oxygen concentration. These models are used to understand deviations of the ORR from standard models. This project has shown how the experimental approach developed can be used to study catalysts for electrolysers The researchers have also developed a prototype water electrolyser utilising only 20µg cm-2 of precious metal.

  1. Zalitis, C., Sharman, J; Wright, E, Kucernak, A. “Properties of the hydrogen oxidation reaction on Pt/C catalysts at optimised high mass transport conditions and its relevance to the anode reaction in PEFCs and cathode reactions in electrolysers, ” Electrochimica Acta, 176 (2015), 763-776.
  2. Markiewicz, M., Zalitis, C., Kucernak, A. “Performance measurements and modelling of the ORR on fuel cell electrocatalysts – the modified double trap model”, Electrochim. Acta 2015, in Press
  3. M. Zalitis, D. Kramer, J. Sharman, E. Wright, and A.R. Kucernak. Pt Nano-Particle Performance for PEFC Reactions at Low Catalyst Loading and High Reactant Mass Transport. ECS Trans., 58(2013) , 39-47, doi: 10.1149/05801.0039ecst
  4. C. M. Zalitis, D. Kramer and A. R. Kucernak. Pt Nano-Particle Performance for PEFC Reactions at Low Catalyst Loading and High Reactant Mass Transport. Phys. Chem. Chem. Phys., 15, 4329, (2013)