Robust Lifecycle Design and Health Monitoring for Fuel Cell Extended Performance (RESILIENCE)

Dr Lisa (Bartlett) Jackson ~ Loughborough University
Prof John Andrews ~ University of Nottingham
Prof Tom Jackson ~ Loughborough University
Overview

- Overview of project.
- More detail on meeting the project objectives.
- Project to date.
- Related work.
Overview of Project
- Area of focus

- Reliability of Fuel Cell System to maximise life.
 - Achieved by:
 - better system integration
 - design optimisation
 - effective health management

- Multidisciplinary approach, including the areas of mathematics, information science and engineering.

 fuel cell power sources at the forefront of future UK energy provision.
Overview of Project
- Current limitations

- The area of reliability assessment for the fuel cell system is still in its infancy.
 - Many of these applications relate to single cells or subsystems.
 - Understanding the behaviour at a system level is critical.

- Requirement of maximal performance over its life, producing commercial viability.
 - An effective asset management strategy is required to fill a current gap in the research.

- Managing and understanding the large amounts of data to make informed decisions.
Overview of Project
- Research Vision & Aim

- The **vision** of this project is to improve:
 - The understanding of the cell/stack/system.
 - The ability to deal with data in an informed manner.
 - The support and decision making throughout the lifecycle.

- The overall **aim** of this research is to produce:
 - an intelligent and dynamic infrastructure to support the fuel cell system design and operation to achieve optimal reliability throughout its life, in a given market with specified limitations on the available resources.
Overview of Project - Objectives

1. **Achieve the most robust design**
 - Initial design process.
 - Limitations on resources and functional requirements.

2. **Establish a ‘dynamic’ asset management strategy**
 - Understanding the degradation of the system elements.
 - Performing maintenance on a predict and avoid strategy.

3. **Establish a diagnostic capability**
 - To identify the causes of failed or degraded system performance.

4. **Establish a real-time dynamic and adaptive intelligent infrastructure**
 - To manage large terse data sets.
 - Enable interrogation of the information for system level informed decisions.
Overview of Project - Integrated Units

Objective 1: Robust Design
Objective 2: Dynamic Asset Management
Objective 3: Diagnostic Capability
Objective 4: Intelligent Infrastructure

Intelligent Health Monitoring Tool
Meeting the Objectives

- **Initial Requirement: Establish the Fuel Cell System Functional Description**
 - Commercial viability.
 - Industrial collaborator, Intelligent Energy.
 - Knowledge will be gained of the overall functionality of the fuel cell and system structure.
 - A failure analysis (FMEA) of the system modules will be used.
 - The relationship between potential design variations and the functional requirements, environmental conditions and practical implementation issues would also be established.
 - Initial reference models will be constructed.
Meeting the Objectives

- **Obj.1: Robust Design**
 - **Fuel Cell Module Failure Model Generation**
 - Fault Tree Analysis and Binary Decision Diagrams.
 - Data for the component failure rates would be imported from the data store where the latest, continually updated, values are available.
 - **Fuel Cell System Design Optimisation**
 - Genetic Algorithm multi-objective framework.
 - Enable setting the component selection, the redundancy allocation and the servicing requirements in the fuel cell system design.
Meeting the Objectives

- **Obj. 2: Dynamic Asset Management Strategy**
 - **Component Degradation Model Development**
 - Establish probabilistic models.
 - Utilisation and environment data.
 - Component lifetime data.
 - **Asset Management Strategy Development**
 - Control the risk of in-service failure to an acceptable limit.
 - System structure considerations (redundancies).
 - Replacement intervals and setting of renewal conditions.
 - Constant updating of the strategy as the data quantity increases, and operating or environmental conditions change.
Meeting the Objectives

- **Obj. 3: Diagnostic Capability**

 - **Prognostics Model Development**
 - Predict the symptoms which will be observed for every potential component level fault condition.
 - A dynamical model of each sub-system.
 - Development of simulation software will use the Petri Net approach.

 - **Sensor Type and Location Selection**
 - Determination of the value of the sensor information - information indices.

 - **Fault Diagnostics**
 - Bayesian Network.
 - Adapted for Dynamics and *The time duration between the occurrence of multiple faults* - a pattern recognition approach.
Meeting the Objectives

- **Obj. 4: Adaptive Intelligent Infrastructure**
 - **Data Hub Infrastructure**
 - Ontology will form the foundations.
 - Semi-automated node and linking.
 - Use a layered approach providing direct mapping to data stores.
 - **Integrated System Optimisation**
 - Interrogation of ontology to yield critical quantifiable lifecycle process parameters.
 - A further layer for prediction of areas for optimisation for the lifetime strategy.
 - The environment created will enable a dynamic or ‘living’ capability.
 - **Dynamic Health Monitoring Visualiser**
 - Visual system to quickly interpret results.
Project to Date

~ Intelligent Health Monitoring Tool

- Not yet started.

- First two RAs due to start imminently (next month).

- PhD student support – 2 hopefully starting in October (currently in recruitment).
Related work

- Other fuel cell work currently on going:
 - Fuel cell integration into an unmanned aerial vehicle.
 - Control system work for fuel cell/battery hybrid.
 - Thermal management of evaporatively cooled fuel cell vehicles.
 - Structural integration of PEMFC into existing aircraft wing components.
 - Social acceptance analysis of PEMFC technology (vehicles).
 - Gas diffusion layer degradation analysis.
 - Reliability modelling of fuel cells.
 - SOFC
Thank you for your time.

Any questions?