Project Complete
To utilise the newly developed approach for making ultra-low loading and high mass transport active electrodes to study the hydrogen oxidation and evolution reactions and the oxygen reduction and evolution reactions in making an operating electrolyser or fuel cell
Scientific Advances:
– Production of microelectrokinetic model for the hydrogen reaction which describes performance of platinum based electrodes across applied potential, pH, hydrogen concentration and temperature using four kinetic parameters. This model is used to simultaneously fit results for 19 independent experiments.
– Production of a microelectrokinetic model for the oxygen reduction reaction which describes performance of platinum based electrodes across applied potential, temperature and oxygen concentration. These models are used to understand deviations of the ORR from standard models. This project has shown how the experimental approach developed can be used to study catalysts for electrolysers The researchers have also developed a prototype water electrolyser utilising only 20µg cm-2 of precious metal.
- Zalitis, C., Sharman, J; Wright, E, Kucernak, A. “Properties of the hydrogen oxidation reaction on Pt/C catalysts at optimised high mass transport conditions and its relevance to the anode reaction in PEFCs and cathode reactions in electrolysers, ” Electrochimica Acta, 176 (2015), 763-776.
- Markiewicz, M., Zalitis, C., Kucernak, A. “Performance measurements and modelling of the ORR on fuel cell electrocatalysts – the modified double trap model”, Electrochim. Acta 2015, in Press http://dx.doi.org/10.1016/j.electacta.2015.04.066
- M. Zalitis, D. Kramer, J. Sharman, E. Wright, and A.R. Kucernak. Pt Nano-Particle Performance for PEFC Reactions at Low Catalyst Loading and High Reactant Mass Transport. ECS Trans., 58(2013) , 39-47, doi: 10.1149/05801.0039ecst
- C. M. Zalitis, D. Kramer and A. R. Kucernak. Pt Nano-Particle Performance for PEFC Reactions at Low Catalyst Loading and High Reactant Mass Transport. Phys. Chem. Chem. Phys., 15, 4329, (2013)