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{ f ! A Biogas mainly consists
' of methane (50i 75%)
- , et and carbon dioxide (251
n Anaerobic 50%), and can be
. e produced from the
" s anaerobic digestion of
l. - biomass, landfill, and
Transport fuel wastewater treatment.
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Digestate

Crops and residues © NNFCC

A Biogas can be used for the generation of electricity and heating but suffers from high
emissions and a low heating value due to its high CO, content.

A CH,-rich biogas obtained by removing CO, can be used as a substitute for natural
gas in a wide range of applications. However, separating CO, is an energy intensive
and costly process.

A Catalytic reforming of biogas without prior CO, separation (also called dry reforming
of methane) could effectively and sustainably produce syngas (CO and H,).

High temperature, CH, + CO, Y 2CO -+ Ehrbon deposition,
high energy cost _ catalyst deactivation
Thermal catalytic process




Non-thermal plasmas
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low temperature (as low as room temperature)

generation of highly energetic electrons (1-10 eV)/chemically reactive
species (free radicals O, OH, excited atoms, molecules and ions)

fast instant reactions/fast start-shut down 1 distributed system
size: microsystem 1 large scale; compact and mobile system

flexibility to combine with other technologies, e.g. plasma/UV,
plasma/catalysis, plasma/adsorption, plasma/biochemical

Plasma-catalysis (advantages)

To To To o

synergistic effect (interactions between plasma and catalysts)
reduced metal particle size and enhanced metal dispersion
Improved selectivity, yield and energy efficiency

minimise the formation of unwanted by-products

T

Coaxial DBD Packed Bed DBD Gliding Arc (GA) Rotating GA
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A Flow rate: 50 ml/min, CO,/CH, molar ratio: 1:1;
A -1 stands for the plasma reaction without a catalyst.
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Thermodynamic equilibrium conversion rates of CH, and CO, as a
function of temperature with CH,/CO, molar ratio of 1 at 1atm
(without plasma)
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CO,-TPD (left) and BET (right)

S Pore Pore
Sample (mEE_Tl) volume diameter

= ) (cm3g?) (nm)
%j 10Ni 268.0 0.393 3.798
S 10Ni1Co 256.0 0.394 3.809
Q 10Ni3Co |  250.4 0.375 3.821
= 10Ni5Co 246.5 0.349 3.834
10Ni7.5Co | 228.7 0.330 3.841

10Ni10Co | 221.3 0.312 3.846

100 200 300 1400 500 600 700
Temperature (°C)

A CO,-TPD results indicate that the basicity of the catalysts increases with Co
loading (enhances CO, adsorption and O production);

A The increase of Co content decreased the specific surface area and the pore
volume of the catalysts;

A The superior performance of the catalyst with 5 wt.% Co results from the
combined effect (trade off) between basicity and specific surface area.
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A Catalyst
0.4 g 10 wt.%Ni/ 9-Al,0,

10 wt.%Ni - 2 wt.% X/o-
Al,O4 (X =K, Mg and Ce)

10 wt.%Ni - y wt.% K/o-
Al,O;(y =4, 6 and 8)
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Process optimisation using ANN

60

[ Best Line: Y=0.99T+0.015
£ R=0.983

(e I~ N
] ) <
LA AL L I B N B B

Predicted result

b2
]
LA L

Fit
O Data

[
]
T I Ll L] Ll

0 10 20 30 40 50 60

Experimental value

<

Comparison of the predicted and

_ experimental values in the
The optimal structure of the ANN model optimised ANN model.




